JCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

DESIGN TECHNIQUES FOR IMPROVEMENT OF **CANNY EDGE DETECTION ALGORITHM**

¹Shwetha.V, ²Dr.C.H.Renu Madhavi

Research Scholar, Associate Professor

Department of Electronics and Instrumentation Engineering R V College of Engineering, Bengaluru, Karnataka, India

Abstract- Edge detection is a process of identifying and detecting sharp discontinuities in an image. The discontinuities are abrupt changes in pixel intensity gray level value. Although a number of various techniques for detection of edges are available, but amongst all these edge detection techniques, the canny edge detection algorithm is the best, most effective and the widely used method for edge detection because it consists of a number of adjustable parameters which can affect the speed and effectiveness of the algorithm. We address two practical issues, namely smoothing factor selection and efficient implementation of thresholding in implementing Canny edge detection algorithm. Detecting the accurate edges or boundaries ease the location of objects in the image and parameters like shape, area can be measured easily. This paper presents a brief study on improved versions of canny edge detection. This paper contributes to present existing novel approaches to improve detection using canny edge detection.

Keywords - Canny edge detection, Thresholding, Smoothing factor

I. INTRODUCTION

Image segmentation is the process of breaking the images into meaningful parts so that no information is lost and helps to get more data, present in the image. Segmenting the image properly is a challenging task and utmost care is to be taken. Segmentation of the image can be done by the following approaches based on the discontinuity, based on the intensity value and based on the region of similarity.

Segmenting an image based on discontinuity, is often called as edge detection, is the key point. If the image contains two or more objects, certainly there will be boundary between those objects. This boundary leads to formation of edges and thus helps to cut the image based on these edges i.e. an edge occurs due to the discontinuity in the image intensity.

A significant change, usually the intensity, local to the image results in edges in the images. Edge detection is a necessary step in image processing, because the edges in images are the resultant of the boundary established between two objects or between an object and background. By detecting these edges, it is possible to divide the image into segment of meaningful objects. Edges in the image are detected by the first derivative and second derivative of the image intensity function. The traditional edge detection algorithms are done through detecting the maximum value of the first derivative or zero crossing of the second derivative. The fundamental steps in edge detection are: i)Image smoothing for noise reduction: Noise in the image will affect considerably the first and second derivatives of the intensity. Hence

noise must be filtered.

- ii)Detection of edges: A local operation that selects all the 'possible' edges in the image.
- iii) Edge localization: Selecting the true edges from the list of the 'possible' edges.

Edge detection is one of the most important techniques that have been commonly implemented in image processing. It is used in image segmentation, registration and identification of image processing. The concept of the edge in an image is the most fundamental feature of the image because the edge contains valuable information about the internal objects inside image. Hence, edge detection is one of the key research works in image processing. Edge detection of an image is a very important step towards understanding image features. The conventional edge detection operators, such as Roberts, Sobel[5], Prewitt, Kirsch, LOG and canny etc, obtain unsatisfying outcome in practice because of their drawbacks. In 1986, John Canny proposed the three performance criteria of optimal edge detection operator and had deduced an approximate implementation of the optimal edge detection operator—Canny operator[1]. Canny operator has been mostly put into practice because of its excellent performance[3].

II. TRADITIONAL CANNY EDGE DETECTION

In [1], John Canny thought an optimal edge detection operator should meet the following three performance criteria:

- 1) Maximum of signal-noise ratio (good detection), that is to say, there should be a low probability of failing to mark real edge points, and low probability of falsely marking non edge points. This criterion makes the output signal-noise ratio of the edge maximum.
- 2) Good localization, that is to say, the points marked as edge points by the operator should be as close as possible to the center of true edge.
- 3) Only one response to a single edge, that is to say, only one response output for a single edge, and the faint edges should be suppressed greatest.

In the procedure of edge detection, noise suppression and edge accurate locations cannot meet the requirements simultaneously. While the edge detection operator smoothes the image to remove the noise, the uncertainty of the edge increases. In contrast, when the sensitivity of edge detection increases, the noise does. Canny operator has made a tradeoff between the noise suppression and good localization [14], and deduced an approximate implementation of the optimal edge detector. The implemented steps as follows:

1) Smooth the image with Gaussian filter

Canny operator, firstly, smoothes the original image with the 1st derivation of 2-D Gaussian function [21], and obtains the smoothed image g(x, y). Assuming the 2-D Gaussian function as:

$$G(x,y) = \frac{1}{2\pi\sigma} \exp(-\frac{x^2 + y^2}{2\sigma^2})$$
 (1.1)

 $G(x,y) = \frac{1}{2\pi\sigma} \exp(-\frac{x^2 + y^2}{2\sigma^2})$ (1.1)
Where σ indicates the standard variance of Gaussian function, and it determines the width of the Gaussian filter and outcome of smoothing.

2) Compute the gradient magnitude and direction of the smoothed image[22]

Computing the data array of smoothed image with the means of finite difference in the neighborhood of 2×2 , denoting the partial derivation of the x-direction and y-direction as G(x), G(y), then its gradient magnitude and direction can be computed respectively:

$$M[i,j] \sqrt{G(x)^2 + G(y)^2}$$
 (1.2)
 $Q[i,j] = \arctan(G(y)/G(x))$ (1.3)

3) Perform non-maximum suppression and determine the candidate edge points

In the image of gradient magnitude, it produces the multi-points appearance surrounding the point M [i, j], which should be thinned to obtain the accurate positions by the means of single pixel. Namely, the procedure of this is called non-maximum suppression. During the processing, the canny operator performs the interpolation along its gradient direction surrounding its 8 neighborhoods, and then the center pixel M [I, j] is compared with its adjacent two pixels along its gradient direction. If it is less than any of the two, it is marked as 0; otherwise, it is marked as 1. When finishing this procedure, the multi-points are thinned as one pixel width, and the accurate gradient magnitude is preserved [12].

4) Perform edge detection and edge connection with double thresholds

Canny operator produces the final edge from the candidate edge points with double thresholds[15]. Firstly, it selects the high threshold Th and the low threshold Tl; Secondly, it scans the whole image to detect any pixels that are marked as candidate edge points. If the gradient magnitude G(i,j) of Point(i, j) is greater than the high threshold Th, then it is absolutely determined as edge point. It is completely not edge point when the gradient magnitude G(i,j) of point(i,j) is less than Tl. For these points whose gradient magnitudes range from Tl to Th, they are considered as the suspected edge points and examine their connectivity. If their adjacent pixels have edge pixels, then they are also considered as edge pixels, otherwise, they are non-edge pixels. [13]

III. THE DRAWBACK ANALYSIS OF THE TRADITIONAL CANNY OPERATOR [32]

Canny operator, although, is deduced based on the optimization theory[23], in practice, it does not often presents optimally. Firstly, this operator smoothes the image with Gaussian filter, which has also smoothed the high frequency signals that may have the edge pixels present, making the loss of edge information while suppressing the noise. In addition to that, it uses two thresholds called the high and low thresholds. The high and low thresholds are set manually requiring prior empirical knowledge, and it is possible to get a proper threshold after many experiments [28]. As with any recursive procedure, this process needs to use much stack space to store the intermediate data in order to be able to retrace. For large images, this may require a large amount of memory. For small memory systems, it puts unnecessarily tight restrictions on the image size that can be processed. For virtual memory systems, this may incur excessive virtual memory swapping and greatly prolong the running time. However, in practice, the high and low thresholds often change because of the scenes and illumination change frequently. The conventional canny operator lack of the capability of self-adaptation, in many cases, it cannot obtain a satisfying detection results.

IV. ADDRESSING ISSUES OF TRADITIONAL CANNY OPERATOR

A.Edge preserving and noise suppression

To address the issue of edge preserving and noise suppression, different techniques have been introduced by various researchers which include replacing Gaussian filter with LOG filter, media filtering, bilateral filtering, self adaptive filter, anisotropic filter, Self adaptive filter or morphological filter. Some researchers also proposed different methods to overcome the problem of edge preserving and suppression of noise such as quad edge detection method, adaptive canny edge detection method, canny edge based image expansion algorithm, Modified Eight-Directional Canny for Robust Edge Detection method, DGW-Canny edge detector, noise-resilient edge detection algorithm.

B.Threshold Selection

The problem of threshold selection can be avoided by using various methods such as OTSU algorithm[41], customized threshold function, self-adaptive threshold value, connected component analysis algorithm, genetic algorithm, two adaptive thresholds were obtained by doing differential operation on amplitude gradient histogram, adaptive threshold selection method, adaptive dual-threshold detection, DGW-Canny edge detector. Many researchers have used OTSU method. It is because of the ease of implementation and relative complexity.

V.THE SURVEY ON THE PERFORMANCE OF DIFFERENT TECHNIQUES USED IN CANNY EDGE DETECTION **ALGORITHM**

Table 5.1: the survey on the performance of different techniques used in canny edge detection algorithm

2018 Soff filt was introduced as the first step of improved Canny algorithm. Also, gradient magnitude and kernel gradient were adjussed on the method of Euclidean distance are adopted to process it; secondly using the Preichea algorithm to calculate partial gradient amplitude operation to get images of thresholds value, then find the average of all thresholds that had been calculated, half of the average is high threshold value is know threshold value, then find the average of all thresholds that had been calculated, half of the average is high threshold value is know threshold value. It has proposed an adaptive threshold edge detection algorithm in this paper, which is based on gradient magnitude to maximize the separability of the restaltant classes, to determine the low and high thresholds of the teamy operator. Finally, the edge detection masks. First one for horizontal, second one for vertical, thid one for positive right diagonal. 10			survey on the performance of different technique	
improved Canny algorithm. Also, gradient magnitude and kernel gradient were adjusted specially for edge detection in brain MRI images. [6] 2017 Firstly, the media filtering and filtering based on the method of Encidena distance are adopted to process it; secondly using the Freichen algorithm to calculate partial gradient amplitude partial gradient amplitude operation to get images of thresholds value, then find the average of all thresholds that had been calculated, half of the average is high threshold value is low threshold value. [8] 2012 It has proposed an adaptive threshold of the high threshold value is low threshold value. [8] 2012 It has proposed an adaptive threshold of the high threshold value is low threshold value. [8] 2012 It has proposed an adaptive threshold of the average of algorithm in this paper, which applies the bilateral filtering that has the advantages of edge-prescript and noise removing firstly. Then it uses OTSU, which is based on gradient magnitude to maximize the separability of the resultant classes, to determine the low and high thresholds of the campy operator. Finally, the edge detection and connection are performed. [9] 2014 Methodology is divided in two parts: a. Proposed Quad Edge Detection method, working algorithm using four convolution masks. First one for horizontal, second one for vertical, third one for positive left diagonal. b. Proposed Enhanced Edge Detection method, working algorithm using six convolution masks are negative left diagonal and Negative right diagonal. [10] 2017 This paper proposes an optimized Campy edge detection algorithm for edge detection of core image by combining self-adaptive threshold function in the requests to produce useful and accurate edge detection of or opicity engages and the proposed detection of core image by combining self-adaptive threshold be implemented using an efficient connected in the proposed algorithm is an effective, real-time town of the proposed analysis algorithm. [10] 2007 The smoothing factor of the Gaussian	Ref	Year	Design Methodology and Existing study	Inferences
magnitude and kernel gradient were adjusted specially for edge detection in brain Method and partial mages. [6] 2017 Firstly, the media filtering and filtering abased on the method of Facilidean distance are adopted to process it; secondly using the Freichen algorithm to calculate gradient amplitude; finally, using the Otsu algorithm to calculate gradient amplitude operation to get images of thresholds value, then find the average of all thresholds value, then find the average of all thresholds that had been calculated, half of the average is high threshold value, and the half of the high threshold value is low threshold value. [8] 2012 It has proposed an adoptive threshold edge detection algorithm in this paper, which is based on gradient magnitude to maximize the esperability of the resultant classes, to determine the low and high thresholds of the canny operator. Finally, the edge detection method, working algorithm using six convolution musks. First one for horizontal, second one for vertical third one for positive right diagonal. And fourth one for positive right diagonal and Negative right diagonal and Negative right diagonal. [111] 2017 This paper proposed a mobile application to detect cracks in the road and with customized threshold function in the requests to produce useful and accurate edge detection. [24] 2014 This paper proposes an optimized Canny operator of core image by combining self-adaption smooth filtering and self-adaption smooth filtering and self-adaption or for cere image by combining self-adaption or for cere image for composition of core image by combining self-adaption or for cere image for composition of core image by combining self-adaption or for cere image for composition of core image by combining self-adaption or for cere image for the canny operator of the Gaussian kernel should be chosen to maximize the discrete component analysis algorithm. which is not only including the gradient directions of component analysis algorithm. [32] 2007 The smoothing factor of the Gaussian	[2]	2018	<u> </u>	
Specially for edge detection in brain MRI images.				•
Section Pristly, the media filtering and filtering based on the method of Euclidean distance are adopted to process it; secondly using the Freichen algorithm to calculate gradient amplitude; finally, using the Otsu algorithm to calculate partial gradient amplitude operation to get images of thresholds value, then find the average of all thresholds value, then find the average of all thresholds that had been calculated, half of the average is high threshold value is low threshold value. It has proposed an adaptive threshold edge detection algorithm in this paper, which applies the bilateral filtering that has the advantages of edge-preserving and noise renoving firstly. Then it uses OTSU, which is based on gradient magnitude to maximize the separability of the resultant classes, to determine the low and high thresholds of the cannoy operator. Finally, the edge detection and connection are performed. Polymone Po				
Separation Firstly, the media filtering hased on the method of Euclidean distance are adopted to process it; secondly using the Freichen algorithm to calculate gartial gradient amplitude; finally, using the Otsu algorithm to calculate partial gradient amplitude, then find the average of all thresholds that had been calculated, that of the average is high threshold value, and the half of the high threshold value is tow threshold value, and the half of the high threshold value is tow threshold valu		ĺ		
based on the method of Euclidean distance are adopted to process it; secondly using the Freichen algorithm to calculate gradient amplitude; finally, using the Otsu algorithm to calculate partial gradient amplitude operation to get images of thresholds walte, then find the average of all thresholds that had been calculated, half of the average is high threshold value is low threshold value. [8] 2012 It has proposed an adaptive threshold edge detection algorithm in this paper, which applies the bilateral filtering that has removing firstly. Then it uses OTSU, which is based on gradient magnitude to maximize the expanibility of the resultant classes, to determine the low and high thresholds of the canapy operator. Finally, the edge detection and connection are performed. [9] 2014 Methodology is divided in two parts: a. Proposed Qual Edge Detection method, working algorithm using four convolution masks. The additional convolution masks are negative left diagonal and fourth one for positive left diagonal and fourth one for positive right diagonal convolution masks are negative left diagonal and Negative right diagonal. [11] 2017 This paper proposed an obbile application to detect cracks in the road and with customized threshold function in the requests to produce useful and accurate edge detection. [24] 2014 This paper proposes an optimized Canny edge detection algorithm for edge detection of core image by combining self-adaption smooth filtering and self-adaptive threshold function in the requests to produce useful and accurate edge detection algorithm for edge detection of core image by combining self-adaption smooth filtering and self-adaptive threshold function in the requests to produce useful and accurate edge detection algorithm for edge detection algorithm in the requests to produce useful and accurate edge detection algorithm in the requests to produce useful and accurate edge detection algorithm in the requests to produce useful and accurate edge detection algorithm in the requests to produce the read				
are adopted to process it; secondly using the Freichen algorithm to calculate partial gradient amplitude; finally, using the Osta algorithm to calculate partial gradient amplitude operation to get images of thresholds value, then find the average of all thresholds whate, then find the average of all thresholds that had been calculated, half of the average is high threshold value is now threshold value. [8] 2012 It has proposed an adaptive threshold edge detection algorithm in this paper, which applies the bilateral filtering that has the advantages of edge-preserving and noise removing firstly. Then it uses OTSU, which is based on gradient magnitude to maximize the separability of the resultant classes, to determine the low and high thresholds of the canny operator. Finally, the edge detection and connection are performed. [9] 2014 Methodology is divided in two parts a Proposed Qual Edge Detection masks. First one for horizontal, second one for vertical, third one for positive right diagonal. and fourth one for positive infer diagonal, and fourth one for positive right diagonal and Negative right diagonal. [11] 2017 This paper proposed a mobile application to detect cracks in the road and with customized threshold function in the requests to produce useful and accurate edge detection problems and the proposed and the resultant classes of produce useful and accurate edge of precent and the resultant classes and the r	[6]	2017		
Freichen algorithm to calculate gradient amplitude, finally, using the Otsu algorithm to calculate partial gradient amplitude operation to get images of thresholds value, then find the average of all thresholds value, then find the average of all thresholds value, then find the average of all thresholds value, and been calculated, half of the average is high threshold value and the half of the high threshold value is low threshold value. [8] 2012 It has proposed an adaptive threshold edge detection algorithm in this paper, which applies the bilateral filtering that has the advantages of edge-preserving and noise removing firstly. Then it uses OTSU, which is based on gradient magnitude to maximize the separability of the resultant classes, to determine the low and high thresholds of the camy operator. Finally, the colge detection and connection are performed. [9] 2014 Methodology is divided in two parts: a. Proposed Quale Edge Detection method, working algorithm using four convolution masks. First one for horizontal, second one for vertical, third one for positive right diagonal b. Proposed Enhanced Edge Detection method. working algorithm using six convolution masks are negative left diagonal and Negative right dingonal. [11] 2017 This paper proposed an aboile application to detect cracks in the road and with customized threshold function in the requests to produce useful and accurate edge detection algorithm for edge detection of core image by combining self-adaption smooth filtering and self-adaptive threshold function to the requests to produce useful and accurate edge detection algorithm for edge detection algorithm conflexing the shader of core image by combining self-adaption and varies the shader of core image by combining self-adaption and return the construction of core image by combining self-adaption and convolution masks are negative left diagonal and Negative right diagonal. [24] 2010 This paper proposes an optimized Canny edge detection algorithm for edge detection algorithm of the regulatio		ĺ		
amplitude; finally, using the Otsu algorithm to calculate partial gradient amplitude operation to get images of thresholds value, then find the average of all thresholds that had been calculated, half of the average is high threshold value is now threshold avalue, and the half of the high threshold value is now threshold value. [8] 2012 It has proposed an adaptive threshold edge detection algorithm in this paper, which applies the bilateral filtering that has the advantages of edge-preserving and noise removing firstly. Then it uses OTSU, which is based on gradient magnitude to maximize the separability of the resultant classes, to determine the low and high thresholds of the canny operator. Finally, the edge detection and connection are performed. [9] 2014 Methodology is divided in two parts: a. Proposed Quad Edge Detection method, working algorithm using six convolution masks. First one for horizontal, second one for vertical, third one for positive left diagonal, and fourth one for positive right diagonal. [10] 2017 This paper proposed a mobile application to detect cracks in the road and with customized threshold function in the requests to produce useful and accurate edge detection. [21] 2017 This paper proposes an optimized Canny edge detection and canny method, working algorithm using six convolution masks are negative left diagonal and Negative right diagonal. [22] 2010 This paper proposes an optimized Canny edge detection and canny method, working algorithm using six convolution masks are negative left diagonal and Negative right diagonal. [23] 2017 This paper proposes a mobile application to detect cracks in the road and with customized threshold function in the requests to produce useful and accurate edge detection appointm for edge detection smooth fillering and self-adaptive threshold value. [24] 2014 This paper proposes an optimized Canny edge detection appointm of cap detection algorithm for edge detection appointm applied to a mobile application for edge detection algorithm for edge dete		ĺ		
1		ĺ		
operation to get images of thresholds value, then find the average of all threshold value, and the half of the high threshold value, and the half of the high threshold value is low threshold value. [8] 2012 Il has proposed an adaptive threshold edge detection algorithm in this paper, which applies the bilateral filtering that has the advantages of edge-preserving and noise removing firstly. Then it uses OTSU, which is based on gradient magnitude to maximize the seaprability of the resultant classes, to determine the low and high thresholds of the canny operator. Finally, the edge detection and connection are performed. [9] 2014 Methodology is divided in two parts: a. Proposed Quad Edge Detection method, working algorithm using four convolution masks. First one for horizontal, second one for vertical, third one for positive right diagonal. b. Proposed Enhanced Edge Detection method, working algorithm using six convolution masks are negative left diagonal and Fourth one for positive right diagonal and Negative right diagonal. [11] 2017 This paper proposed a molbile application to detect cracks in the road and with customized threshold function in the requests to produce useful and accurate edge detection. [24] 2014 This paper proposes an optimized Canny edge detection algorithm of redge detection of core image by combining self-adaptive threshold value. [25] 2000 The smoothing factor of the Gaussian kernel should be chosen to maximize the discrete version of Canny's original criteria. Thresholding with hysteresis should be implemented using an efficient connected component analysis algorithm. [32] 2007 The smoothing factor of the Gaussian kernel should be chosen to maximize the discrete version of Canny's original criteria. Thresholding with hysteresis should be implemented using an efficient connected component analysis algorithm. [33] 2007 For contour detection, this paper proposed the improved template algorithm. [34] 2007 For contour detection, this paper proposed the improved template algorithm. [ĺ		
then find the average of all thresholds that had been calculated, half of the average is high threshold value, and the half of the high threshold value is low threshold value. It has proposed an adaptive threshold edge detection algorithm in this paper, which applies the bilateral filtering that has the advantages of edge-preserving and noise removing firstly. Then it uses OTSU, which is based on gradient magnitude to maximize the separability of the resultant classes, to determine the low and high thresholds of the canny operator. Finally, the edge detection and connection are performed. Methodology is divided in two parts: a. Proposed Quan Edge Detection method, working algorithm using four convolution masks. First one for horizontal, second one for vertical, third one for positive right diagonal, and fourth one for positive right diagonal and Negative right diagonal convolution masks are negative left diagonal and Negative right diagonal. This paper proposed a mobile application to detect cracks in the road and with customized threshold function in the requests to produce useful and accurate edge detection. This paper proposes an optimized Canny edge detection algorithm for edge detection is mooth filtering and self-adaptive threshold value. This paper proposes an optimized Canny edge detection algorithm for edge detection of core image by combining self-adaption smooth filtering and self-adaptive threshold value. The smoothing factor of the Gaussian kernet should be chosen to maximize the discrete version of Canny's original criteria. Thresholding with hystersis should be implemented using an efficient connected component analysis algorithm. The proposed algorithm is an effective, real-time detection algorithm is not only including the gradient directions of the direction of core template algorithm, which is to not only including the gradient directions of core (Canny) edge detection algorithm is not only including the gradient directions of core to component analysis algorithm.		ĺ		accuracy or edge detection
Bay 2012 It has proposed an adaptive threshold value. The experimental results show that this advantages of edge-preserving and noise removing firstly. Then it uses OTSU, which is based on gradient magnitude to maximize the saparability of the resultant classes, to determine the low and high thresholds of the canny operator. Finally, the edge detection and connection are performed. Experiment results have demonstrated that the canny operator is proposed. Experiment results have demonstrated that the canny operator. Finally, the edge detection method, working algorithm using four convolution masks. First one for horizontal, second one for vertical, third one for positive right diagonal and fourth one for positive right diagonal and fourth one for positive right diagonal convolution masks. The additional convolution masks The additional convolution masks are negative left diagonal and lover the convolution masks. The additional convolution masks are negative left diagonal and lover the convolution masks. The additional convolution masks are negative left diagonal and lover the convolution masks. The additional convolution masks are negative left diagonal and Negative right diagonal. [11] 2017 This paper proposes an optimized Canny dedge detection. The canny algorithm applied to a mobile application can be used to detect damage on the road very well with accurate results, but also by adding threshold function to the image can know the cracks the image more precisely because it will eliminate the smaller edge of pixel intensity of the edge pixel image that had crack. The final experiment results showed that the improved data compared with the traditional canny edge detection algorithm. Following the suggestions in implementing criteria. Thresholding with hysteresis should be implemented using an efficient connected component analysis algorithm. Following the suggestions in implementing because the improved template algorithm, which is not only including the gradient directions of including the				
Solution It is proposed an adaptive threshold value It is proposed an adaptive threshold value It is proposed an adaptive threshold edge detection algorithm in this paper, which applies the bilateral filtering that has the advantages of edge-preserving and noise removing firstly. Then it uses OTSU, which is based on gradient magnitude to maximize the separability of the resultant classes, to determine the low and high thresholds of the canny operator. Finally, the edge detection and connection are performed. Solution Methodology is divided in two parts: Experiment results have demonstrated that the enhanced and quad proposed methods for dege detection and connection are performed. Experiment results have demonstrated that the enhanced and quad proposed methods for different gray level images more than which is proposed in the propose		ĺ		
The sperimental results show that this improved algorithm can well solve the advantages of edge-preserving and noise removing firstly. Then it uses OTSU, which is based on gradient magnitude to maximize the separability of the resultant classes, to determine the low and high thresholds of the canny operator. Finally, the edge detection and connection are performed. Polymone P		ĺ		
The experimental results show that this detection algorithm in this paper, which applies the bilateral filtering that has the advantages of edge-preserving and noise removing firstly. Then it uses OTSU, which is based on gradient magnitude to maximize the separability of the resultant classes, to determine the low and high thresholds of the canny operator. Finally, the edge detection and connection are performed. Polician Policia		ĺ		
detection algorithm in this paper, which applies the bilateral filtering that has the advantages of edge-preserving and noise removing firstly. Then it uses OTSU, which is based on gradient magnitude to maximize the separability of the resultant classes, to determine the low and high thresholds of the camp operator. Finally, the edge detection and connection are performed. [9] 2014 Methodology is divided in two parts: a. Proposed Quad Edge Detection method, working algorithm using four convolution masks. First one for horizontal, second one for vertical, third one for positive left diagonal, and fourth one for positive right diagonal b. Proposed Enhanced Edge Detection method, working algorithm using six convolution masks are negative left diagonal and Negative right diagonal. [11] 2017 This paper proposed a mobile application to detect cracks in the road and with requests to produce useful and accurate edge detection. [24] 2014 This paper proposes an optimized Canny edge detection algorithm for edge detection of core image by combining self-adaption smooth filtering and self-adaptive threshold value. [32] 2000 The smoothing factor of the Gaussian kernel should be chosen to maximize the discrete version of Canny's original criteria. Thresholding with hysteresis should be implemented using an efficient connected component analysis algorithm. [33] 2007 For contour detection, this paper proposed the improved Lemlake algorithm, which is not only including the gradient directions of the form of the proposed algorithm is an effective, real-time detection algorithm is not only including the gradient directions of the form of the canny algorithm is an effective, real-time detection algorithm. Speriments showed that this introved CANNY algorithm has this improved CANNY algorithm has the simproved CANNY algorithm h	ΓΩΊ	2012		The experimental results show that this
applies the bilateral filtering that has the advantages of edge-preserving and noise removing firstly. Then it uses OTSU, which is based on gradient magnitude to maximize the separability of the resultant classes, to determine the low and high thresholds of the canny operator. Finally, the edge detection and connection are performed. [9] 2014 Methodology is divided in two parts: a. Proposed Quad Edge Detection method, working algorithm using four convolution masks. First one for horizontal, second one for vertical, third one for positive left diagonal, and fourth one for positive right diagonal. b. Proposed Enhanced Edge Detection method, working algorithm using six convolution masks The additional convolution masks are negative left diagonal and Negative right diagonal. This paper proposed a mobile application to detect cracks in the road and with customized threshold function in the requests to produce useful and accurate edge detection. [11] 2014 This paper proposes an optimized Canny edge detection algorithm for edge detection of core image by combining self-adaptive monoth filtering and self-adaptive threshold value. [24] 2014 This paper proposes an optimized Canny edge detection algorithm for edge detection of core image by combining self-adaptive monoth filtering and self-adaptive threshold use. [32] 2000 The smoothing factor of the Gaussian kernel should be chosen to maximize the discrete version of Canny's original criteria. Thresholding with hysteresis should be implemented using an efficient connected component analysis algorithm. [33] 2007 For contour detection, this paper proposed the improved template algorithm, which is not only including the gradient directions of that this improved CANNY algorithm has not proposed algorithm is an effective, realtime detection algorithm. Experiments showed that this improved CANNY algorithm has not proposed and proposed algorithm and caretime the canny and reflect the details of core crack, particles, and pore distribution more clearly. The final experi	[o]	2012		
2014 2014 2014 2014 2014 2014 2014 2014 2016 2007		ĺ		
Seenes and illumination, and extended its use.		ĺ	- Annually models.	
the separability of the resultant classes, to determine the low and high thresholds of the canny operator. Finally, the edge detection and connection are performed. [9] 2014 Methodology is divided in two parts: a. Proposed Quad Edge Detection method, working algorithm using four convolution masks. First one for horizontal, second one for vertical, third one for positive right diagonal, and fourth one for positive right diagonal and convolution method, working algorithm using six convolution method, working algorithm using six convolution masks are negative left diagonal and Negative right diagonal. [11] 2017 This paper proposed a mobile application to detect cracks in the road and with customized threshold function in the requests to produce useful and accurate edge detection. [24] 2014 This paper proposes an optimized Canny edge detection algorithm for edge detection of core image by combining self-adaptivo moth filtering and self-adaptive threshold value. [32] 2000 The smoothing factor of the Gaussian kernel should be chosen to maximize the discrete version of Canny's original criteria. Thresholding with hysteresis should be implemented using an efficient connected component analysis algorithm. [33] 2007 For contour detection, this paper proposed the improved template algorithm, which is not only including the gradient directions of the time the proposed algorithm is an effective, real-time detection algorithm is not only including the gradient directions of the time the proposed algorithm is an effective, real-time detection algorithm is an effective.				
the separability of the resultant classes, to determine the low and high thresholds of the canny operator. Finally, the edge detection and connection are performed. [9] 2014 Methodology is divided in two parts: a. Proposed Quad Edge Detection method, working algorithm using four convolution masks. First one for horizontal, second one for vertical, third one for positive left diagonal, and fourth one for positive right diagonal b. Proposed Enhanced Edge Detection method, working algorithm using six convolution masks The additional convolution masks are negative left diagonal and Negative right diagonal and Negative right diagonal and Negative right diagonal [11] 2017 This paper proposed a mobile application to detect cracks in the road and with customized threshold function in the requests to produce useful and accurate edge detection. [24] 2014 This paper proposes an optimized Canny edge detection algorithm for edge detection of core image by combining self-adaption smooth filtering and self-adaptive threshold value. [32] 2000 The smoothing factor of the Gaussian kernel should be chosen to maximize the discrete version of Canny's original criteria. Thresholding with hysteresis should be implemented using an efficient connected component analysis algorithm. [33] 2007 For contour detection, this paper proposed the improved template algorithm, which is not only including the gradient directions of the time the control of the gradient directions of the improved template algorithm, which is not only including the gradient directions of the time the canny and the enhanced that the enhanced Edge Detection method, dual the enhanced Edge Detection method finding the edges of images with canny. And the enhanced Hoge Detection algorithm component analysis are proposed amount and proposed algorithm and the enhanced Edge Detection algorithm is an effective, real-time detection alg		and the same		and extended its use.
Solution Content		950	170	Name View.
[9] 2014 Methodology is divided in two parts: a. Proposed Quad Edge Detection method, working algorithm using four convolution masks. First one for horizontal, second one for vertical, third one for positive left diagonal, and fourth one for positive left diagonal, and fourth one for positive left diagonal b. Proposed Enhanced Edge Detection method, working algorithm using six convolution masks The additional convolution masks are negative left diagonal and Negative right diagonal. [111] 2017 This paper proposed a mobile application to detect cracks in the road and with customized threshold function in the requests to produce useful and accurate edge detection. [241] 2014 This paper proposes an optimized Canny edge detection algorithm for edge detection of core image by combining self-adaptive threshold value. [242] 2014 This paper proposes an optimized Canny edge detection algorithm for edge detection of core image by combining self-adaptive threshold value. [243] 2000 The smoothing factor of the Gaussian kernel should be chosen to maximize the discrete version of Canny's original criteria. Thresholding with hysteresis should be implemented using an efficient connected component analysis algorithm. [352] 2007 For contour detection, this paper proposed the improved template algorithm, which is not only including the gradient directions of	and the same			Disc.
2014 Methodology is divided in two parts: a. Proposed Quad Edge Detection method, working algorithm using four convolution masks. First one for horizontal, second one for vertical, third one for positive left diagonal, and fourth one for positive right diagonal b. Proposed Enhanced Edge Detection method, working algorithm using six convolution masks The additional convolution masks are negative left diagonal and Negative right diagonal. 111	2	- C		No. of the last of
Solution				237
a. Proposed Quad Edge Detection method, working algorithm using four convolution masks. First one for horizontal, second one for vertical, third one for positive left diagonal, and fourth one for positive right diagonal b. Proposed Enhanced Edge Detection method, working algorithm using six convolution masks are negative left diagonal and Negative right diagonal. [11] 2017 This paper proposed a mobile application to detect cracks in the road and with customized threshold function in the requests to produce useful and accurate edge detection. [24] This paper proposes an optimized Canny edge detection algorithm for edge detection of core image by combining self-adaptive monoth filtering and self-adaptive threshold value. [32] 2000 The smoothing factor of the Gaussian kernel should be chosen to maximize the discrete version of Canny's original criteria. Thresholding with hysteresis should be implemented using an efficient connected component analysis algorithm. [33] 2007 For contour detection, this paper proposed the improved template algorithm, which is not only including the gradient directions of the formation and method, finding the edge of pitcannet, and the enhanced Edge Detection method finding the edges of images with quad tranny. And the enhanced Edge Detection method finding the edges of images with quad tranny. And the enhanced Edge Detection method finding the edges of images with quad tranny. And the enhanced Edge Detection method finding the edges of images with quant canny elde detection algorithm and canny methods. However, this method takes longer time to complexity. The Canny algorithm applied to a mobile application can be used to detect damage on the road very well with accurate results, but also by adding threshold function to the image can know the cracks the image more precisely because it will eliminate the smaller edge of pixel intensity of the edge pixel image that had crack. The final experiment results showed that the improved data compared with the traditional canny edge detectio	[9]	2014	Methodology is divided in two parts:	•
working algorithm using four convolution masks. First one for horizontal, second one for vertical, third one for positive left diagonal, and fourth one for positive left diagonal b. Proposed Enhanced Edge Detection method, working algorithm using six convolution masks are negative left diagonal and Negative right diagonal. This paper proposed a mobile application to detect cracks in the road and with customized threshold function in the requests to produce useful and accurate edge detection. The Canny algorithm applied to a mobile application to detect cracks in the road and with customized threshold function in the requests to produce useful and accurate edge detection. The Canny algorithm applied to a mobile application can be used to detect damage on the road very well with accurate results, but also by adding threshold function to the image can know the cracks the image more precisely because it will eliminate the smaller edge of pixel intensity of the edge pixel image that had crack. The final experiment results showed that the improved algorithm could retain weaker boundary and reflect the details of core crack, particles, and pore distribution more clearly. The detection results could provide more abundant information and were beneficial in explaining rock data compared with the traditional canny edge detection algorithm. The smoothing factor of the Gaussian kernel should be chosen to maximize the discrete version of Canny's original criteria. Thresholding with hysteresis should be implemented using an efficient connected component analysis algorithm. The proposed algorithm is an effective, real-time detection algorithm. Experiments showed the time improved CANNY algorithm has not only including the gradient directions of that this improved CANNY algorithm has not only including the gradient directions of the stream of the phase of			a. Proposed Quad Edge Detection method,	enhanced and quad proposed methods for
for vertical, third one for positive left diagonal and fourth one for positive right diagonal b. Proposed Enhanced Edge Detection method, working algorithm using six convolution masks The additional convolution masks are negative left diagonal and Negative right diagonal. [11] 2017 This paper proposed a mobile application to detect cracks in the road and with customized threshold function in the requests to produce useful and accurate edge detection. [24] This paper proposes an optimized Canny edge detection algorithm for edge detection of core image by combining self-adaptive threshold value. [24] This paper proposes an optimized Canny edge detection algorithm for edge detection of core image by combining self-adaptive mooth filtering and self-adaptive threshold value. [32] 2000 The smoothing factor of the Gaussian kernel should be chosen to maximize the discrete version of Canny's original criteria. Thresholding with hysteresis should be implemented using an efficient connected component analysis algorithm. [33] 2007 For contour detection, this paper proposed the improved template algorithm, which is not only including the gradient directions of the contour detection algorithm, which is not only including the gradient directions of the canny is right of the edges of images with quad and canny methods. However, this method takes longer time to compute results due to its higher degree of complexity. The Canny algorithm applied to a mobile application can be used to detect damage on the road very well with accurate results, but also by adding threshold function to the image can know the cracks the image more precisely because it will eliminate the smaller edge of pixel intensity of the edge pixel image that had crack. The final experiment results showed that the improved dagorithm. Experimenting to a mobile application can be used to detect damage on the road very well with accurate results, but also by adding threshold function in the requested to a mobile application can be used to detect damage on the				edge detection produces satisfactory results
diagonal, and fourth one for positive right diagonal b. Proposed Enhanced Edge Detection method, working algorithm using six convolution masks The additional convolution masks are negative left diagonal and Negative right diagonal. [11] 2017 This paper proposed a mobile application to detect cracks in the road and with customized threshold function in the requests to produce useful and accurate edge detection. [24] 2014 This paper proposes an optimized Canny edge detection algorithm for edge detection of core image by combining self-adaption smooth filtering and self-adaptive threshold value. [32] 2000 The smoothing factor of the Gaussian kernel should be chosen to maximize the discrete version of Canny's original criteria. Thresholding with hysteresis should be implemented using an efficient connected component analysis algorithm. [33] 2007 For contour detection, this paper proposed the improved template algorithm, which is not only including the edges of images with greater efficiency when compared with quad takes longer time to compute results due to its higher degree of complexity. The Canny algorithm applied to a mobile application can be used to detect damage on the road very well with accurate results, but also by adding threshold function to the image can know the cracks the image more precisely because it will eliminate the smaller edge of pixel intensity of the edge pixel image that had crack. The final experiment results showed that the improved algorithm could retain weaker boundary and reflect the details of core crack, particles, and pore distribution more clearly. The detection results could provide more abundant information and were beneficial in explaining rock data compared with the traditional canny edge detection algorithm. [32] 2000 For contour detection, this paper proposed the improved template algorithm, which is not only including the gradient directions of	7			for different gray level images more than
diagonal b. Proposed Enhanced Edge Detection method, working algorithm using six convolution masks The additional convolution masks are negative left diagonal and Negative right diagonal. [11] 2017 This paper proposed a mobile application to detect cracks in the road and with customized threshold function in the requests to produce useful and accurate edge detection. [24] 2014 This paper proposes an optimized Canny edge detection algorithm for edge detection of core image by combining self-adaption smooth filtering and self-adaptive threshold value. [32] 2000 The smoothing factor of the Gaussian kernel should be chosen to maximize the discrete version of Canny's original criteria. Thresholding with hysteresis should be implemented using an efficient connected component analysis algorithm. [33] 2007 For contour detection, this paper proposed the improved template algorithm, which is not only including the gradient directions of the contour detection, and the proposed algorithm is an effective, real-time detection algorithm is an effective, real-time detection algorithm. Experiments showed that this improved CANNY algorithm has	4			
b. Proposed Enhanced Edge Detection method, working algorithm using six convolution masks The additional convolution masks are negative left diagonal and Negative right diagonal. [11] 2017 This paper proposed a mobile application to detect cracks in the road and with customized threshold function in the requests to produce useful and accurate edge detection. [24] 2014 This paper proposes an optimized Canny edge detection algorithm for edge detection of core image by combining self-adaption smooth filtering and self-adaptive threshold value. [24] 2000 The smoothing factor of the Gaussian kernel should be chosen to maximize the discrete version of Canny's original criteria. Thresholding with hysteresis should be implemented using an efficient connected component analysis algorithm. [33] 2007 For contour detection, this paper proposed the improved template algorithm, which is not only including the gradient directions of that this improved CANNY algorithm has				
method, working algorithm using six convolution masks. The additional convolution masks are negative left diagonal and Negative right diagonal. [11] 2017 This paper proposed a mobile application to detect cracks in the road and with customized threshold function in the requests to produce useful and accurate edge detection. [24] 2014 This paper proposes an optimized Canny edge detection algorithm for edge detection of core image by combining self-adaption smooth filtering and self-adaptive threshold value. [24] 2000 The smoothing factor of the Gaussian kernel should be chosen to maximize the discrete version of Canny's original criteria. Thresholding with hysteresis should be implemented using an efficient connected component analysis algorithm. [33] 2007 For contour detection, this paper proposed the improved template algorithm, which is not only including the gradient directions of that this improved CANNY algorithm has	17		-	
Convolution masks The additional convolution masks are negative left diagonal and Negative right diagonal.		5-17		
Convolution masks are negative left diagonal and Negative right diagonal.	7.5	- 4		
2017 This paper proposed a mobile application to detect cracks in the road and with requests to produce useful and accurate edge detection. 2014 This paper proposes an optimized Canny edge detection algorithm for edge detection of core image by combining self-adaption smooth filtering and self-adaptive threshold value. 2000 The smoothing factor of the Gaussian kernel should be chosen to maximize the discrete version of Canny's original criteria. Thresholding with hysteresis should be implemented using an efficient connected component analysis algorithm. 2007 For contour detection, this paper proposed the improved template algorithm, which is not only including the gradient directions of the function to the implementation and were well with accurate results, but also by adding threshold to detect damage on the road very well with accurate results, but also by adding threshold the road very well with accurate results, but also by adding threshold to enable to detect damage on the road very well with accurate results, but also by adding threshold to enable detection in the road very well with accurate results, but also by adding threshold to enable to everade very well with accurate results, but also by adding threshold to enable to everade very well with accurate results, but also by adding threshold to enable very well with accurate results, but also by adding threshold to enable very well with accurate results, but also by adding threshold to enable very well with accurate results, but also by adding threshold to enable very well with accurate results, but also by adding threshold the road very well with accurate results, but also by adding threshold the road very well with accurate results, but also by adding threshold the road very well with accurate results. Paper application can be used to detect damage on the road very well with accurate results. Paper application can be used to detect damage on hadding threshold the road very well with accurate results. Paper application can be used to det	1			nigher degree of complexity.
[24] 2014 This paper proposed a mobile application to detect cracks in the road and with requests to produce useful and accurate edge detection. [24] 2014 This paper proposes an optimized Canny edge detection algorithm for edge detection of core image by combining self-adaption smooth filtering and self-adaptive threshold value. [24] 2000 The smoothing factor of the Gaussian kernel should be chosen to maximize the discrete version of Canny's original criteria. Thresholding with hysteresis should be implemented using an efficient connected component analysis algorithm. [33] 2007 For contour detection, this paper proposed the improved template algorithm, which is not only including the gradient directions of the road wery well with accurate results, but the road very well with accurate results. Solve and know the cracks the image more precisely because it will eliminate the smaller edge of pixel intensity of the edge pixel image showed that the improved detection algorithm could retain weaker boundary and reflect the details of core crack, particles, and pore distribution more clearly. The detection results could provide more abundant information and were beneficial in explaining rock data compared with the traditional canny edge detection alg	1	3		
detect cracks in the road and with customized threshold function in the requests to produce useful and accurate edge detection. [24] 2014 This paper proposes an optimized Canny edge detection algorithm for edge detection of core image by combining self-adaption smooth filtering and self-adaptive threshold value. [32] 2000 The smoothing factor of the Gaussian kernel should be chosen to maximize the discrete version of Canny's original criteria. Thresholding with hysteresis should be implemented using an efficient connected component analysis algorithm. [33] 2007 For contour detection, this paper proposed the improved template algorithm, which is not only including the gradient directions of the road very well with accurate results, but also by adding threshold function to the image can know the cracks the image more precisely because it will eliminate the smaller edge of pixel intensity of the edge pixel image that had crack. The final experiment results showed that the improved algorithm could retain weaker boundary and reflect the details of core crack, particles, and pore distribution more clearly. The detection results could provide more abundant information and were beneficial in explaining rock data compared with the traditional canny edge detection algorithm. Following the suggestions in implementing component analysis algorithm. Following the suggestions in implementing optimal edge detection quality and very significant reduction in running time for large images.	[11]	2017		The Conny algorithm and indicated the state of the state
customized threshold function in the requests to produce useful and accurate edge detection. [24] 2014 This paper proposes an optimized Canny edge detection algorithm for edge detection of core image by combining self-adaption smooth filtering and self-adaptive threshold value. [32] 2000 The smoothing factor of the Gaussian kernel should be chosen to maximize the discrete version of Canny's original criteria. Thresholding with hysteresis should be implemented using an efficient connected component analysis algorithm. [33] 2007 For contour detection, this paper proposed the improved template algorithm, which is not only including the gradient directions of the date of pixel intensity of the edge pixel image that had crack. The final experiment results showed that the improved algorithm could retain weaker boundary and reflect the details of core crack, particles, and pore distribution more clearly. The detection results could provide more abundant information and were beneficial in explaining rock data compared with the traditional canny edge detection algorithm. [32] 2000 The smoothing factor of the Gaussian kernel should be chosen to maximize the discrete version of Canny's original criteria. Thresholding with hysteresis should be implemented using an efficient connected component analysis algorithm. [33] 2007 For contour detection, this paper proposed the improved template algorithm, which is not only including the gradient directions of the road very well with accurate results also by adding threshold function to the image can know the cracks the image more precisely because it will eliminate the smaller edge of pixel intensity of the edge pixel image that had crack. The final experiment results showed that the improved algorithm could retain weaker boundary and reflect the details of core crack, particles, and pore distribution more clearly. The detection results could provide more abundant information and were beneficial in explaining rock data compared with the traditional canny edge detection alg	[11]	2017		
requests to produce useful and accurate edge detection. [24] 2014 This paper proposes an optimized Canny edge detection algorithm for edge detection of core image by combining self-adaption smooth filtering and self-adaptive threshold value. [32] 2000 The smoothing factor of the Gaussian kernel should be chosen to maximize the discrete version of Canny's original criteria. Thresholding with hysteresis should be implemented using an efficient connected component analysis algorithm. [33] 2007 For contour detection, this paper proposed the improved template algorithm, which is not only including the gradient directions of the detection algorithm also by adding threshold function to the image can know the cracks the image more precisely because it will eliminate the smaller edge of pixel intensity of the edge pixel image that had crack. The final experiment results showed that the improved algorithm could retain weaker boundary and reflect the details of core crack, particles, and pore distribution more clearly. The detection results could provide more abundant information and were beneficial in explaining rock data compared with the traditional canny edge detection algorithm. Following the suggestions in implementing Canny's edge detector will in general result in optimal edge detection quality and very significant reduction in running time for large images. The proposed algorithm is an effective, real-time detection algorithm. Experiments showed that this improved CANNY algorithm has			Table 1	
Can know the cracks the image more precisely because it will eliminate the smaller edge of pixel intensity of the edge pixel image that had crack. This paper proposes an optimized Canny edge detection of core image by combining self-adaption smooth filtering and self-adaptive threshold value. The final experiment results showed that the improved algorithm could retain weaker boundary and reflect the details of core crack, particles, and pore distribution more clearly. The detection results could provide more abundant information and were beneficial in explaining rock data compared with the traditional canny edge detection algorithm. Sollowing the suggestions in implementing Canny's edge detector will in general result in optimal edge detection quality and very significant reduction in running time for large images. Sollowing the suggestions in implementing canny's edge detection quality and very significant reduction in running time for large images. Sollowing the suggestions in implementing canny's edge detection quality and very significant reduction in running time for large images. Sollowing the suggestions in implementing canny's edge detection quality and very significant reduction in running time for large images. Sollowing the suggestions in implementing canny's edge detection quality and very significant reduction in running time for large images.		ĺ	TOTAL STATE OF THE	
because it will eliminate the smaller edge of pixel intensity of the edge pixel image that had crack. This paper proposes an optimized Canny edge detection algorithm for edge detection of core image by combining self-adaption smooth filtering and self-adaptive threshold value. The final experiment results showed that the improved algorithm could retain weaker boundary and reflect the details of core crack, particles, and pore distribution more clearly. The detection results could provide more abundant information and were beneficial in explaining rock data compared with the traditional canny edge detection algorithm. The smoothing factor of the Gaussian kernel should be chosen to maximize the discrete version of Canny's original criteria. Thresholding with hysteresis should be implemented using an efficient connected component analysis algorithm. The proposed algorithm is an effective, real-time detection algorithm. Experiments showed that this improved CANNY algorithm has				2000
[24] 2014 This paper proposes an optimized Canny edge detection algorithm for edge detection of core image by combining self-adaption smooth filtering and self-adaptive threshold value. [32] 2000 The smoothing factor of the Gaussian kernel should be chosen to maximize the discrete version of Canny's original criteria. Thresholding with hysteresis should be implemented using an efficient connected component analysis algorithm. [33] 2007 For contour detection, this paper proposed the improved template algorithm, which is not only including the gradient directions of the edge pixel image that had crack. The final experiment results showed that the improved algorithm could retain weaker boundary and reflect the details of core crack, particles, and pore distribution more clearly. The detection results could provide more abundant information and were beneficial in explaining rock data compared with the traditional canny edge detection algorithm. Following the suggestions in implementing Canny's edge detector will in general result in optimal edge detection quality and very significant reduction in running time for large images.			Secondi.	
[24] 2014 This paper proposes an optimized Canny edge detection algorithm for edge detection of core image by combining self-adaption smooth filtering and self-adaptive threshold value. [32] 2000 The smoothing factor of the Gaussian kernel should be chosen to maximize the discrete version of Canny's original criteria. Thresholding with hysteresis should be implemented using an efficient connected component analysis algorithm. [33] 2007 For contour detection, this paper proposed the improved template algorithm, which is not only including the gradient directions of the Gaussian kernel should be gradient directions of the Gaussian kernel component analysis algorithm. [34] 2007 For contour detection, this paper proposed the improved template algorithm, which is not only including the gradient directions of the Gaussian kernel discrete version of Canny's original criteria. Thresholding with hysteresis should be implemented using an efficient connected the improved template algorithm, which is not only including the gradient directions of the Gaussian kernel should be chosen to maximize the discrete version of Canny's original criteria. Thresholding with hysteresis should be implemented using an efficient connected the improved template algorithm, which is not only including the gradient directions of the Gaussian kernel shoundary and reflect the details of core crack, particles, and pore distribution more clearly. The detection results could provide more abundant information and were beneficial in explaining rock data compared with the traditional canny edge detection algorithm. [50] Following the suggestions in implementing Canny's edge detector will in general result in optimal edge detection quality and very significant reduction in running time for large images.				
[24] 2014 This paper proposes an optimized Canny edge detection algorithm for edge detection of core image by combining self-adaption smooth filtering and self-adaptive threshold value. [32] 2000 The smoothing factor of the Gaussian kernel should be chosen to maximize the discrete version of Canny's original criteria. Thresholding with hysteresis should be implemented using an efficient connected component analysis algorithm. [33] 2007 For contour detection, this paper proposed the improved template algorithm, which is not only including the gradient directions of the Gaussian kernel should be improved template algorithm, which is not only including the gradient directions of the Gaussian kernel should be improved template algorithm, which is not only including the gradient directions of the Gaussian kernel should be improved template algorithm. The final experiment results showed that the improved algorithm could retain weaker boundary and reflect the details of core crack, particles, and pore distribution more clearly. The detection results could provide more abundant information and were beneficial in explaining rock data compared with the traditional canny edge detection algorithm. Following the suggestions in implementing Canny's edge detector will in general result in optimal edge detection quality and very significant reduction in running time for large images. The final experiment results showed that the improved algorithm could retain weaker boundary and reflect the details of core crack, particles, and pore distribution more clearly. The detection results could provide more abundant information and were beneficial in explaining rock data compared with the traditional canny edge detection algorithm. Following the suggestions in implementing Canny's edge detector will in general result in optimal edge detection quality and very significant reduction in running time for large images.				
edge detection algorithm for edge detection of core image by combining self-adaption smooth filtering and self-adaptive threshold value. [32] 2000 The smoothing factor of the Gaussian kernel should be chosen to maximize the discrete version of Canny's original criteria. Thresholding with hysteresis should be implemented using an efficient connected component analysis algorithm. [33] 2007 For contour detection, this paper proposed the improved template algorithm, which is not only including the gradient directions of the detection improved algorithm could retain weaker boundary and reflect the details of core crack, particles, and pore distribution more clearly. The detection results could provide more abundant information and were beneficial in explaining rock data compared with the traditional canny edge detection algorithm. Following the suggestions in implementing Canny's edge detector will in general result in optimal edge detection quality and very significant reduction in running time for large images. The proposed algorithm is an effective, real-time detection algorithm. Experiments showed that this improved CANNY algorithm has	[24]	2014	This paper proposes an ontimized Canny	
of core image by combining self-adaption smooth filtering and self-adaptive threshold value. The detection results could provide more abundant information and were beneficial in explaining rock data compared with the traditional canny edge detection algorithm. Solution The smoothing factor of the Gaussian kernel should be chosen to maximize the discrete version of Canny's original criteria. Thresholding with hysteresis should be implemented using an efficient connected component analysis algorithm. Solution So	[]	_01 F		
smooth filtering and self-adaptive threshold value. The detection results could provide more abundant information and were beneficial in explaining rock data compared with the traditional canny edge detection algorithm. Solution Post provide more abundant information and were beneficial in explaining rock data compared with the traditional canny edge detection algorithm. Solution Post provide more abundant information and were beneficial in explaining rock data compared with the traditional canny edge detection algorithm. Solution Post provide more abundant information and were beneficial in explaining rock data compared with the traditional canny edge detection algorithm. Solution Post provide more abundant information and were beneficial in explaining rock data compared with the traditional canny edge detection algorithm. Following the suggestions in implementing Canny's edge detector will in general result in optimal edge detection quality and very significant reduction in running time for large images. Solution Post provide more abundant information and were beneficial in explaining rock data compared with the traditional canny edge detection algorithm. Following the suggestions in implementing canny's edge detector will in general result in optimal edge detection quality and very significant reduction in running time for large images. Solution Post provide more abundant information and were beneficial in explaining rock data compared with the traditional canny edge detection algorithm.				
value. The detection results could provide more abundant information and were beneficial in explaining rock data compared with the traditional canny edge detection algorithm. The smoothing factor of the Gaussian kernel should be chosen to maximize the discrete version of Canny's original criteria. Thresholding with hysteresis should be implemented using an efficient connected component analysis algorithm. The detection results could provide more abundant information and were beneficial in explaining rock data compared with the traditional canny edge detection algorithm. Following the suggestions in implementing Canny's edge detector will in general result in optimal edge detection quality and very significant reduction in running time for large images. The proposed algorithm is an effective, real-time detection algorithm. Experiments showed that this improved CANNY algorithm has				<u> </u>
abundant information and were beneficial in explaining rock data compared with the traditional canny edge detection algorithm. [32] 2000 The smoothing factor of the Gaussian kernel should be chosen to maximize the discrete version of Canny's original criteria. Thresholding with hysteresis should be implemented using an efficient connected component analysis algorithm. [33] 2007 For contour detection, this paper proposed the improved template algorithm, which is not only including the gradient directions of that this improved CANNY algorithm has				
[32] 2000 The smoothing factor of the Gaussian kernel should be chosen to maximize the discrete version of Canny's original criteria. Thresholding with hysteresis should be implemented using an efficient connected component analysis algorithm. [33] 2007 For contour detection, this paper proposed the improved template algorithm, which is not only including the gradient directions of the Gaussian kernel Following the suggestions in implementing Canny's edge detector will in general result in optimal edge detection quality and very significant reduction in running time for large images. The proposed algorithm is an effective, real-time detection algorithm. Experiments showed that this improved CANNY algorithm has				-
[32] 2000 The smoothing factor of the Gaussian kernel should be chosen to maximize the discrete version of Canny's original criteria. Thresholding with hysteresis should be implemented using an efficient connected component analysis algorithm. [33] 2007 For contour detection, this paper proposed the improved template algorithm, which is not only including the gradient directions of that this improved CANNY algorithm has				
[32] 2000 The smoothing factor of the Gaussian kernel should be chosen to maximize the discrete version of Canny's original criteria. Thresholding with hysteresis should be implemented using an efficient connected component analysis algorithm. [33] 2007 For contour detection, this paper proposed the improved template algorithm, which is not only including the gradient directions of that this improved CANNY algorithm has		<u> </u>	<u> </u>	
should be chosen to maximize the discrete version of Canny's original criteria. Thresholding with hysteresis should be implemented using an efficient connected component analysis algorithm. [33] 2007 For contour detection, this paper proposed the improved template algorithm, which is not only including the gradient directions of canny's edge detector will in general result in optimal edge detection quality and very significant reduction in running time for large images. The proposed algorithm is an effective, real-time detection algorithm. Experiments showed that this improved CANNY algorithm has	[32]	2000	The smoothing factor of the Gaussian kernel	
version of Canny's original criteria. Thresholding with hysteresis should be implemented using an efficient connected component analysis algorithm. [33] 2007 For contour detection, this paper proposed the improved template algorithm, which is not only including the gradient directions of version optimal edge detection quality and very significant reduction in running time for large images. The proposed algorithm is an effective, real-time detection algorithm. Experiments showed that this improved CANNY algorithm has			should be chosen to maximize the discrete	Canny's edge detector will in general result in
criteria.Thresholding with hysteresis should be implemented using an efficient connected component analysis algorithm. [33] 2007 For contour detection, this paper proposed the improved template algorithm, which is not only including the gradient directions of that this improved CANNY algorithm has		ĺ	version of Canny's original	optimal edge detection quality and very
be implemented using an efficient connected component analysis algorithm. [33] 2007 For contour detection, this paper proposed the improved template algorithm, which is not only including the gradient directions of that this improved CANNY algorithm has			criteria.Thresholding with hysteresis should	significant reduction in running time for large
component analysis algorithm. [33] 2007 For contour detection, this paper proposed the improved template algorithm, which is not only including the gradient directions of that this improved CANNY algorithm has			be implemented using an efficient connected	
the improved template algorithm, which is not only including the gradient directions of that this improved CANNY algorithm has			component analysis algorithm.	
not only including the gradient directions of that this improved CANNY algorithm has	[33]	2007	For contour detection, this paper proposed	
		ĺ		
X and Y, but also the first order partial finite better noise suppression and edge continuity.		ĺ		
			X and Y, but also the first order partial finite	better noise suppression and edge continuity.

	1	1 4100	
		differences of directions 45 and 135 degree	
		in calculating the amplitude values. These	
		mostly improved the calculation accuracy of	
		the amplitude values. In the non-maxima	
		suppression process, the factor ratio of four	
		quadrants of linear interpolation is improved	
50.17		to achieve better detection results.	
[34]	2009	Based on the analysis of the traditional	The result showed that the improved
		CANNY algorithm, an improved canny	algorithm was better than the tradition
		algorithm is proposed in this paper. In the	algorithm. But, the improved algorithm has
		algorithm, self-adaptive filter is used to	the problem of heavy calculation, which
		replace the Gaussian filter, morphological	needs to be further improved in next stage.
		thinning is adopted to thin the edge and	
		morphological operator is used to achieve	
		the refining treatment of edge points	
		detection and the single pixel level edge.	
[35]	2016	Firstly, anisotropic filter to denoise original	Experiment results show that, the detection
[33]	2010	1	
		grayscale images is used This method can	results of this method have advantages of
		effectively suppress noise and preserve the	smooth and dedicate edge character, high
		edge feature. Secondly, the paper searches	precision, self-adaption and so on. Number of
			= =
		optimizing high and low thresholds used in	,
		Canny operator utilizing genetic algorithm	simultaneously the missing detection of real
1		based on the Otsu evaluative function to	edges is also decreased. Therefore, the
1		avoid human factors	algorithm in this article has certain robustness
Ī		arola naman ractors	
	1255	No.	and is worthy of being promoted
[26]	2012	In this paper, a method is introduced that	The proposed method outperforms the
	2500	computes the threshold values from the	traditional canny method
100		foreground and background image pixels. An	The state of the s
- CO CO			Charles Charles
4	-	image is divided into several blocks using at	Annual Control of the
		multiple resolution levels. After that, a	Share and the state of the stat
		sampling approach is used on global and	Marine Marine
		local regions to get the optimum thresholds	
		by selecting the highest between the class	
Ÿ		variance values	
[25]	2013	An adaptive Canny edge detection	The improved algorithm can suppress noise on
[23]	2013		
		method is proposed which based on Canny	edge detection and preserve the edge
		theory. Adopt the 3*3 neighborhood instead	information, detection with high precision.
		of Canny algorithm in 2*2 neighborhood to	
		calculate the calculation gradient. Then, the	
	- 4		
		maximum between-class variance (Otsu)	
1000		method is used to obtain the high and low	
770	90	thresholds.	
[40]	2010		Commutan simulations show that the immerced
[40]	2010	The paper mainly uses the Mallat wavelet	Computer simulations show that the improved
	100	transform to reinforce the weak edge of	algorithm can make up for the disadvantages
İ		input images, quadratic optimization of	of Canny algorithm, detect edges of pavement
Ī]	genetic algorithm to get a proper threshold	images effectively, and is a less time-
Ī]		
Ī]	in self-adapting standard during Canny	consuming process.Particularly, it has been
Ī]	algorithm steps. With the base of Canny	shown that the presented algorithm can not
Ī]	operator and the improvement, the paper	only eliminate noises effectively but also
1		builds a new model, which satisfies the	protect unclear edges.
Ī]		protect uncical euges.
		need of pavement edge detection real-time	
[38]	2017	In this paper, an improvement of the Canny	The new expansion algorithm preserves the
		edge-based image expansion algorithm is	edges of an object. It generates the higher
1			
1		proposed.In this method, two cases	contrast and sharper images through
1		according to the orientations of the edges are	modification of the neighborhood pixel values
1		defined. In any diagonal orientation, two	of the edges
1		new operators determine whether the	
1			
1		diagonal direction is the left or right	
1		diagonal. For different cases, different	
1		functions are proposed to process the	
i		neighborhood pixel values of the edges.	
505		m o	
[39]	2010	The Otsu method is one of the most popular	The experiment results shows that the
[39]	2010	1 1	improved self-adaptive threshold Canny
[39]	2010	self-adaptive threshold algorithms. However	improved self-adaptive threshold Canny
[39]	2010	self-adaptive threshold algorithms. However the Otsu method cannot automatically set the	improved self-adaptive threshold Canny Operator can detect reasonable number of true
[39]	2010	self-adaptive threshold algorithms. However the Otsu method cannot automatically set the low threshold according to the different	improved self-adaptive threshold Canny Operator can detect reasonable number of true edges while detect less fake edges and
[39]	2010	self-adaptive threshold algorithms. However the Otsu method cannot automatically set the	improved self-adaptive threshold Canny Operator can detect reasonable number of true edges while detect less fake edges and textures. Thus, the self-adaptive threshold
[39]	2010	self-adaptive threshold algorithms. However the Otsu method cannot automatically set the low threshold according to the different image intensity adaptively. In order to	improved self-adaptive threshold Canny Operator can detect reasonable number of true edges while detect less fake edges and textures. Thus, the self-adaptive threshold
[39]	2010	self-adaptive threshold algorithms. However the Otsu method cannot automatically set the low threshold according to the different image intensity adaptively. In order to overcome this defect, an adaptive threshold	improved self-adaptive threshold Canny Operator can detect reasonable number of true edges while detect less fake edges and textures. Thus, the self-adaptive threshold Canny Operator has the better
[39]	2010	self-adaptive threshold algorithms. However the Otsu method cannot automatically set the low threshold according to the different image intensity adaptively. In order to	improved self-adaptive threshold Canny Operator can detect reasonable number of true edges while detect less fake edges and textures. Thus, the self-adaptive threshold

		proposed which calculated the low threshold	the time consumption of this algorithm is even
[27]	2015	adaptively based on a probability model.	less than traditional methods.
[37]	2015	This paper adopts the method of combining	The simulation experiments show that the
		global with local edge detection to extract edge. The global edge detection can obtain	algorithm can extract fully skull image edge whose detail is richer, positioning is more
		the whole edge, which uses adaptive smooth	accurate, and it is not affected by noise easily.
		filter algorithm based on Canny operator.	accurate, and it is not affected by noise easily.
		Local edge detection which uses distance	
		weighted average method based on k-	
		average method can overcome the impact of	
		outliers on clustering effectively. Complete	
		skull image edge is got through edge	
		detection method that combines global with	
		local.	
[36]	2017	This paper proposed an improved method on	The improved algorithm not only has the
		Canny algorithm. Two adaptive thresholds	advantages of the Canny algorithm, but also
		were obtained by doing differential	improves the anti-noise ability, and keeps the
		operation on amplitude gradient histogram.	edge image more clearly.
		Then we connected edge points to get some	
		generalized chains. After that, it needed to	
		calculate their mean value to delete	
		generalized chains, which are smaller than the mean value. Finally, the image edge	
		detection results were got by linear fitting	
		method.	
[31]	2015	An adaptive threshold selection method is	The theoretical analysis shows that threshold
	356	proposed that estimate the high and low	segmentation can upgrade the edge detection
200		thresholds of the entire image while only	accuracy. The high and low threshold of
4		processing the pixels of an each block. In	image can vary in adaptive manner according
		this paper, the threshold segmentation based	to the context contained in the image. The use
		approach is developed to improve	of small size structural operator responses to
		performance of distributed canny edge	precise edge structures with reduction in noise
		detector.	level.
[30]	2014	This article presents an edge detection	This method was tested on many textured-
6		mechanism,named as Modified Eight-	images and was found that it has produced
		Directional Canny for Robust Edge	better results. It is proven that MEDC performs
17.0		Detection (MEDC) which is a modification of Canny's method. This technique has an	better than Canny, on most of the test images.
100		add-in feature of performing edge detection	
7.1		in eight directions, by partitioning the two	
2		dimensional image space into eight planes in	4 3 3 7
74		the order of 22.50. This feature enables	
	No.	MEDC to detect almost all the edges of a	
	45	given image.	
[29]	2014	This paper proposed an improved algorithm	The improved algorithm not only keeps the
		based on Canny algorithm. This algorithm	advantages of the traditional Canny algorithm,
		introduced the concept of gravitational field	but also it enhances the ability of noise
		intensity to replace image gradient, and	suppression and keeps more edge
		obtained the gravitational field intensity	information, i.e. it has higher SNR. This
		operator. Two adaptive threshold selection	algorithm can obtain threshold automatically,
		methods based on the mean of image gradient magnitude and standard deviation	which has higher practical value in the practical engineering application
		were put forward for two kinds of typical	practical engineering application
		images (one has less edge information, and	
		the other has rich edge information)	
		respectively	
[27]	2018	In this paper, a method is introduced that	The results show that from the four type
		computes the threshold values from the	different image datasets used, the proposed
		foreground and background image pixels	method outperforms the Canny method and
		from global and local image analysis.	previous work in terms of FOM values and the
		According to this method, an image is	edge image results obtained. The result of the
		divided into several blocks using multiple	image shows the accurate edge image
		resolution levels. After that, a modification	because it contains the edge image from the
		sampling approach is used on global and	foreground and has ignored the edge image
		local regions to get the optimal thresholds by	from the background.
		selecting the highest between the class	
Γ101	2010	variance values.	The experiment show that the impressed
[18]	2010	This paper select the Canny edge detection	The experiment show that, the improved

		operator, and improved it with filtering by Gauss sigma function and adaptive dual-threshold detection and nonlocal maximum suppression based on dual-threshold, apply to core image edge detection, can get good results both on the precision and accuracy of detection and edge thinning.	Canny algorithm increases the accuracy and immediacy of edge detecting while ensure simultaneous. After detected the core image with improved canny algorithm, engineers can be analyzing and statistical the core image data effectively.
[17]	2011	An improvised edge detection technique is proposed here. The technique uses a Laplacian of Gaussian gradient with a new approach towards the thresholding section. The DGW-Canny framework has been experimented on a data set of images	Results confirm that the DGW-canny edge detector, besides being insensitive to noise, is able to fabricate superior and accurate edges in regions of fine graining, geometrical figures and alphanumerics as compared to the current edge detection
[19]	2011	categorized on the basis of vectors proposed here. A self-adaptive canny operator was developed to detect edges of growing citrus images. RGB color images were obtained and linear transformed into R-B chromatic aberration space at first. In R-B space, width of Gaussian filter fast calculated using integral images and the high and low threshold values obtained by OTSU algorithm were extracted to improve	techniques. The detector is also able to handle noisy as well as noiseless images Experimental results show that this method can obtain proper parameters and it was less sensitive to lighting variations. Moreover, the method has very good performance in respect of the edge connectivity, integrity and weak edge detection.
[7]	2009	automatic edge detection. In this paper, a noise-resilient edge detection algorithm is introduced for brain MRI images. This algorithm includes Replacement of Gaussian smoothing kernel, modification of the gradient magnitude of Canny operator, modification of gradient kernel and fusion of edge images	Computer simulations show that the proposed algorithm is noise-resilient and able to edge-detect brain MRI images effectively in an impulsive noise environment. Also, it makes up for the disadvantages of Canny algorithm, and can detect more edges of MRI brain images effectively. Also, the concept of images fusion is utilized for effective edge
[4]	2018	In this paper, an improved adaptive Canny edge detection algorithm for infrared image of ship is proposed. The contrast limited adaptive histogram equalization algorithm is adopted to enhance the infrared image, the morphological filter replaces the Gauss filter to smooth the image, and the OTSU algorithm is utilized to adjust the high and leave threeholds depreciables.	The experimental results show that the improved Canny edge detection algorithm can automatically set the thresholds, extract the edges, and reduce false edges. It is proved to be an effective method for edge detection with high accuracy and precision.
[2]	2018	low thresholds dynamically. In this paper an edge detection algorithm, specially adjusted for processing brain MRI images is presented. LoG filer was introduced as the first step of improved Canny algorithm. Also, gradient magnitude and kernel gradient were adjusted specially for edge detection in brain MRI images	Various MRI images of brain tumor were used for testing. The results have shown that the proposed algorithm can recognize more details, which can help a lot in detecting the type of brain tumor.
[16]	2009	On the basis of analyzing the conventional Canny algorithm, this paper advanced an adaptive edge-detection method based on the canny operator. This method not only keeps the Canny's good performance in good detection, good localization and only one response to a single edge, but also improves the capability of restraining the fake edge and the automaticity of edge-detection based on the Otsu's thresholding method.	The result indicates that edge contours got from this method have fine SNR and Connectivity, and the most important is that it can self-adaptively ensure the high and low threshold according to the characters of real images, so it has higher automatization. Now the results from the two methods only can be evaluated by eyes, and how to judge them impersonally is our direction to study thoroughly.
[10]	2013	An improved edge detection algorithm is proposed in this paper. The Gaussian filtering is replaced with the morphological filtering. Experimental results show that the improved Canny operator can filter the salt & pepper noise effectively, improve the accuracy of edge detection, and achieve an ideal effect of edge detection.	The final edge image can reduce effectively the influence of noise, keep the edge strength and more complete details, get a more satisfactory subjective result. And by using objective evaluation standards, compared with the traditional Canny operator, information entropy, average gradient, peak signal to noise ratio, correlation coefficient and the distortion

			degree also have increased significantly.
[20]	2010	An improved Canny edge detection	The result showed that the proposed method
		algorithm based on predisposal method was	was much more reliable under the corruption
		presented in this paper, through gray value	of Gaussian noise environment
		distance judgment and edge points'	
		correlation coefficient comparison: two	
		predisposal steps with the Canny operator	
		processing, better edge images were	
		got by the proposed method	

VI. CONCLUSION

Edge detection is one of the most important techniques that have been commonly implemented in image processing. Though Canny edge detection algorithm is the most efficient algorithm, it also has some diadvantages. In this paper, various techniques have been studied to overcome the disadvantage of traditional canny edge detection algorithm. It is found that the various modification done to the canny edge detection algorithm outperforms the traditional canny edge detection algorithm.

VII. REFERENCES

- John Canny. A computational approach to edge detection [J]. IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.8,No.6,pp:679-698,1986.
- Zorana Stosic, Petar Rutesic, "An Improved Canny Edge Detection Algorithm for Detecting Brain Tumors in MRI Images", IJSP, Volume 3, ISSN: 2367-8984, Page no.11-15,2018.
- Ehsan Nadernejad, Sara Sharifzadeh, Hamid Hassanpour, "Edge Detection Techniques: Evaluations and Comparisons", Applied Mathematical Sciences, Vol. 2, 2008, no. 31, 1507 1520
- Lisang Liu, Fenqiang Liang, Jishi Zheng, Dongwei He1 and Jing Huang, "Ship infrared image edge detection based on an improved adaptive Canny algorithm", International Journal of Distributed Sensor Networks, 2018, Vol. 14(3).
- Vineet Saini, Rajnish Garg, "A Comparative Analysis on Edge Detection Techniques Used in Image Processing", IOSR Journal of Electronics and Communication Engineering (IOSRJECE),ISSN: 2278-2834 Volume 1, Issue 2 (May-June 2012), PP 56-59.
- Yingke Feng, Jinmin Zhang and Siming Wang, "A new edge detection algorithm based on Canny idea", AIP Conference Proceedings 1890, 040011 (2017).
- Sos Agaian and Ali Almuntashri, "Noise-Resilient Edge Detection Algorithm for Brain MRI Images", IEEE EMBS, page.no.3689-3692
- Gao Jie, Liu Ning, "An improved adaptive threshold canny edge detection algorithm", IEEE, Page no.164-168,2012
- Naorah Saad Al Harbi. Dr. Msater Prince Syed, "A Novel Approach To Gradient Edge Detection", Journal of Global Research in Computer Science, Volume 5, No. 10, Page.no.1-4, ISSN: 2229-371X, October 2014
- Cai-Xia Deng, Gui-Bin Wang, Xin-Rui Yang, "Image Edge Detection Algorithm Based on Improved Canny Operator", IEEE,ICWAPR 2013,978-1-4799-0417-4/13 Page.no.168-172, 2013.
- [11] G Gunawan, Heri Nuriyanto, S Sriadhi, Achmad Fauzi, Ari Usman, F Fadlina, Haida Dafitri, Janner Simarmata, Andysah Putera Utama Siahaan and Robbi Rahim, "Mobile Application Detection of Road Damage using Canny Algorithm", ICoGeS 2017, 10.1088/1742-6596/1019/1/012035,2017
- [12] Indrajeet Kumar, Jyoti Rawat, Dr. H.S. Bhadauria. "A Conventional Study Of Edge Detection Technique In Digital Image Processing", IJCSMC, Vol. 3, Issue. 4, April 2014, pg.328 – 334.
- [13] Madhurima Banerjee and Prof. Samir Kumar Bandyopadhyay. "Edge Detection Of MRI Images –A Review", EJPMR, 2016, 3(10), 136-140.
- [14] K. Bala Krishnan, Shiva Prakash Ranga and Nageswara Guptha. "A Survey on Different Edge Detection Techniques for Image Segmentation", Indian Journal of Science and Technology, Vol 10(4), DOI: 10.17485/ijst/2017/v10i4/108963 January 2017
- [15] K. Bala Krishnan, Shiva Prakash Ranga and Nageswara Guptha. "Evaluation of Canny and Sobel Operator for Logo Edge Detection", IEEE, ISTMET 2014, 978-1-4799-3704-2/14, 2014.
- [16] Li Er-sen, Zhu Bao-shan, Xia Chao-gui, Zhu Shu-long, Zhao Yong, Song Li-hua, "An Adaptive Edge-detection Method Based on the Canny Operator", IEEE, DOI 10.1109/ESIAT.2009.49, 2009, Page.465-469
- [17] Anand Gupta Ravi Kumar Dalal, Rahul Gupta, Pulkit Wadhwa, "DGW-Canny: An Improvised Version Of Canny Edge Detector", IEEE Access, ISPACS 2011, 978-1-4577-2166-3/11, 2011.
- [18] Huang qi-kun, Zhou yun-cai , "Edge Detection Algorithm of Core Image Based on the Improved Canny Operator", IEEE Access 978-1-4244-5540-9/10,page no.411-413,2010.
- [19] Peng Hui, Zhai Ruifang, Liu Shanmei, Wen Youxian, Wu Lanlan, "Edge Detection of Growing Citrus Based on Self-adaptive Canny Operator", IEEE Access,978-0-7695-4350-5/11,DOI 10.1109/CDCIEM.2011.374,page.no.342-345,2011
- [20] Wang Xiao, Xue Hui, "An Improved Canny Edge Detection Algorithm Based on Predisposal Method for Image Corrupted by Gaussian Noise", IEEE Access, ISSN: 2154-4824.page no. 113-116,2010.
- [21] G.T. Shrivakshan, Dr.C. Chandrasekar, "A Comparison of various Edge Detection Techniques used in Image Processing", IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 1, September 2012, page.no. 269-276, 2012
- [22] Sanjay Kumar, Mahatim Singh and D.K. Shaw, "Comparative Analysis of Various Edge Detection Techniques in Biometric Application", IJET-2016, DOI: 10.21817/ijet/2016/v8i6/160806409, Vol 8 No 6, page.no. 2452-2459, 2016
- [23] Kirti, Abhishek Bhatnagar, "Image Segmentation Using Canny Edge Detection Technique", International Journal of Techno-Management Research, Vol. 04, ISSN: 2321-3744, Page no. 8-14, 2017.
- [24] Tian-Shi Liu, Rui-Xiang Liu, Ping-Zeng and Shao-Wei Pan, "Improved Canny Algorithm for Edge Detection of Core Image", The Open Automation and Control Systems Journal, 6, 426-432, 2014
- [25] Geng Hao, Luo Min, Hu Feng, "Improved Self-adaptive edge detection method based on Canny", IEEE Access, IHMSC-2013, 978-0-7695-5011-4/13, 2013.
- [26] Zuraini Othman, Azizi Abdullah, Anton satria Prabuwono, "A statistical approach of multiple resolution levels for canny edge detection", IEEE Access,ISDA-2012,978-1-4673-5119-5/12, Page.no.837-841,2012.
- [27] Zuraini Othman, Azizi Abdullah, "An Adaptive Threshold Based on Multiple Resolution Levels for Canny Edge Detection",

- Recent Trends in Information and Communication Technology, DOI 10.1007/978-3-319-59427-9_34, Page.no.316-323,2018.
- [28] Kumari, S."Performance Evaluation And Effective Analysis Of Edge Detection Algorithms", International Journal Of Engineering Sciences & Research Technology, 6(6), Page. no. 282-287. doi:10.5281/zenodo. 809170, 2017
- [29] Weibin Rong, Zhanjing Li, Wei Zhang and Lining Sun. "An Improved Canny Edge Detection Algorithm", IEEE Access, 978-1-4799-3979-4/14,page.no.577-582, 2014.
- [30] P. Shanmugavadivu, Ashish Kumar, "Modified Eight-Directional Canny for Robust Edge Detection", IEEE Access, 978-1-4799-6629-5/14,page.no.751-756, 2014
- [31] Miss. Ashwini P. Thombare, Prof. S. B. Bagal, "A Distributed Canny Edge Detector: Comparative Approach", IEEE Access, 978-1-4673-7758-4/15, page.no.312-316, 2015
- [32] Gang Liu and Robert M. Haralick," Two Practical Issues in Canny's Edge Detector Implementation", IEEE Access, 0-7695-0750-6/00,page.no.676-678, 2000.
- [33] Xun Wang and Jian-Qiu Jin," An Edge Detection Algorithm Based on Improved CANNY Operator", IEEE Access, 0-7695-2976-3/07,page.no.623-628, 2007.
- [34] Bing Wang and ShaoSheng Fan, "An improved CANNY edge detection algorithm", IEEE Access, 978-0-7695-3881-5/09,page.no.497-500, 2009.
- [35] Mingjie Wang, Jesse S. Jin, Yifei Jing, Xianfeng Han, Lei Gao and Liping Xiao," The Improved Canny Edge Detection Algorithm Based on an Anisotropic and Genetic Algorithm", IGTA 2016, CCIS 634, pp. 115–124, 2016.
- [36] Li Xuan, Zhang Hong, "An Improved Canny Edge Detection Algorithm". IEEE Access 978-1-5386-0497-7/17, page.no.275-278, 2017
- [37] Liying Yuan, Xue Xu," Adaptive Image Edge Detection Algorithm Based on Canny Operator", IEEE Access,978-1-4673-7573-3/15,page.no.28-31, 2015.
- Songze Zhang, Hongjian Shi," An Improvement of the Canny Edge Based Image Expansion Algorithm", IEEE Access, CISP-BMEI 2017, 978-1-5386-1937-7/17, 2017.
- [39] Yuan-Kai Huo, Gen Wei, Yu-Dong Zhang and Le-Nan Wu, "An Adaptive Threshold for the Canny Operator of Edge Detection". IEEE Access,978-1-4244-5555-3/10, 2010.
- [40] Huili Zhao, Guofeng Qin, Xingjian Wang, "Improvement of Canny Algorithm Based on Pavement Edge Detection", IEEE Access, CISP2010, 978-1-4244-6516-3/10, page.no.964-967,2010
- [41] Nobuyuki Otsu. A threshold selection method from gray-level histogram [J], IEEE Transactions on System, Man, Cybernetics. Vol. SMC-9,No.1,pp:62-66,1979.

